78 research outputs found

    Development of Nonlinear Filtering Algorithms of Digital Half-Tone Images

    Get PDF
    This chapter is devoted to solving the problem of algorithms and structures investigations for Radio Receiver Devices (RRD) with the aim of the nonlinear filtering of Digital Half-Tone Images (DHTI) representing the discrete-time and discrete-value random Markovian process with a number of states greater than two. At that, it is assumed that each value of the DHTI element is represented by the binary g-bit number, whose bits are transmitted via digital communication links in the presence of Additive White Gaussian Noise (AWGN). The authors present the qualitative analysis of the optimal DHTI filtering algorithm. The noise immunity of the optimal radio receiver device for the DHTI filtering with varying quantization and dimension levels is investigated

    Mathematical Models of Video-Sequences of Digital Half-Tone Images

    Get PDF
    This chapter is devoted to Mathematical Models (MM) of Digital Half-Tone Images (DHTI) and their video-sequences presented as causal multi-dimensional Markov Processes (MP) on discrete meshes. The difficulties of MM development for DHTI video-sequences of Markov type are shown. These difficulties are related to the enormous volume of computational operations required for their realization. The method of MM-DHTI construction and their statistically correlated video-sequences on the basis of the causal multi-dimensional multi-value MM is described in detail. Realization of such operations is not computationally intensive; Markov models from the second to fourth order demonstrate this. The proposed method is especially effective when DHTI is represented by low-bit (4-8 bits) binary numbers

    «Quadrupole» mode DR filter for C-band applications

    Get PDF
    The possibility of reducing the radiation loss of dielectric resonator (DR) to the external environment has been investigated for the first time by applying higher order mode of DR, namely “quadrupole” type, with higher Q factor. The “quadrupole” mode for constructing narrow band-pass filter (<1%) has been studied. The resonant frequencies of dielectric resonator have been calculated on grounds of approximate analytical method as well as finite element method. The coupling coefficients of the rectangular DR with coplanar line have been scrutinized both as a function of the glass substrate’s height, namely bs, on which the DR is situated, and as a function of the DR’s displacement toward the center line, namely y₀. The synthesized two-resonator band-pass filter has the improved gain slope. The minimum value of insertion loss at the central frequency of 5.9 GHz is - 2.4dB, the shape factor is equal to 3.45

    First report of Eocene gadiform fishes from the Trans-Urals (Sverdlovsk and Tyumen regions, Russia)

    Get PDF
    AbstractThe recent 2014–2017 controlled excavations carried out in quarries of Sverdlovsk and Tyumen regions, Ural and Western Siberia, are contributing to the knowledge of the middle to late Eocene marine fauna from the Turgay Strait, mainly composed of invertebrates and cartilaginous and bony fishes. Here we present a preliminary report of the bony fishes collected during the campaigns carried out in two Eocene Trans-Urals localities. The sediments of these localities were deposited in a large epicontinental marine basin during the middle to late Eocene, when the Turgay Strait connected the Arctic waters to the North and the Peritethys to the South. Most of the bony fish material examined can be assigned to codfishes (Gadiformes) according to morphological comparison with living and fossil taxa. In particular, nearly complete three-dimensionally preserved lower jaws are confidently assigned to the Merlucciidae, whereas isolated vertebrae and bones are referred to as Gadiformes incertae sedis. This report documents the easternmost occurrence of this group of fishes in the northern hemisphere during the early phases of their radiation, revealing their presence into the Turgay Strait before its closure

    Sсandium(III) Beta-diketonate Derivatives as Precursors for Oxide Film Deposition by CVD

    Get PDF
    AbstractComplexes with acetylacetone Sc(acac)3, dipivaloylmethane Sc(thd)3, 2,2,6,6–tetramethyl-4-fluoro-3,5-heptanedione Sc(tfhd)3, pivaloyltrifluoroacetone Sc(ptac)3, trifluoroacetylacetone Sc(tfac)3, and hexafluoroacetylacetone Sc(hfac)3 were synthesized, purified and identified by elemental analysis, m.p., IR and NMR spectroscopy, and mass spectrometry. The thermal behaviour of the synthesized compounds in the solid state was investigated by the method of difference-scanning calorimetry in vacuum. As a result the thermodynamic characteristics of the melting processes were determined. The temperature dependences of saturated and unsaturated vapour pressure of complexes under study were measured by static method with membrane-gauge manometers. The average molecular weight of gas calculated from the experimental data on unsaturated vapours using ideal gas law was close to the molecular weight of monomer for all investigated compounds. Decomposition temperatures of compounds under study were defined as the temperature above that pressure changes became irreversible. The information about melting and decomposition processes were taken into account at measuring saturated vapour pressure of complexes. The row of volatility Sc(hfac)3 > Sc(ptac)3 > Sc(tfac)3 > Sc(thd)3 ≥ Sc(tfhd)3 > Sc(acac)3 was determined from the p–T dependences obtained. Above information about thermal behaviour of complexes enabled one to use it as a guide for CVD experiments aimed at achieving oxide films with high optical properties. Precursor chosen for film deposition was Sc(thd)3 The Sc2O3 film deposition conditions were following: the gas-carrier rate 1 l/h, He gas-reagent rate 10 l/h, total pressure 10 Torr, evaporator temperature 105-110̊С, substrate temperature 450- 650̊С, substrate Si(100). Ellipsometry was applied to characterize the film thickness and refractive index. The morphology and the composition of the films were determined with XPS and SEM

    Flip Distance Between Triangulations of a Simple Polygon is NP-Complete

    Full text link
    Let T be a triangulation of a simple polygon. A flip in T is the operation of removing one diagonal of T and adding a different one such that the resulting graph is again a triangulation. The flip distance between two triangulations is the smallest number of flips required to transform one triangulation into the other. For the special case of convex polygons, the problem of determining the shortest flip distance between two triangulations is equivalent to determining the rotation distance between two binary trees, a central problem which is still open after over 25 years of intensive study. We show that computing the flip distance between two triangulations of a simple polygon is NP-complete. This complements a recent result that shows APX-hardness of determining the flip distance between two triangulations of a planar point set.Comment: Accepted versio
    corecore